The Docking Stage of Yeast Vacuole Fusion Requires the Transfer of Proteins from a Cis-Snare Complex to a Rab/Ypt Protein

نویسندگان

  • Albert Price
  • Darren Seals
  • William Wickner
  • Christian Ungermann
چکیده

The homotypic fusion of yeast vacuoles requires Sec18p (NSF)-driven priming to allow vacuole docking, but the mechanism that links priming and docking is unknown. We find that a large multisubunit protein called the Vam2/6p complex is bound to cis-paired SNAP receptors (SNAREs) on isolated vacuoles. This association of the Vam2/6p complex with the cis-SNARE complex is disrupted during priming. The Vam2/6p complex then binds to Ypt7p, a guanosine triphosphate binding protein of the Rab family, to initiate productive contact between vacuoles. Thus, cis-SNARE complexes can contain Rab/Ypt effectors, and these effectors can be mobilized by NSF/Sec18p-driven priming, allowing their direct association with a Rab/Ypt protein to activate docking.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new role for a SNARE protein as a regulator of the Ypt7/Rab-dependent stage of docking.

The homotypic fusion of yeast vacuoles occurs in an ordered cascade of priming, docking, and fusion. The linkage between these steps has so far remained unclear. We now report that Vam7p (the vacuolar SNAP-23/25 homolog) signals from the cis-SNARE complex to Ypt7p (the vacuolar Rab/Ypt) to initiate the docking process. After Vam7p has been released from the cis-SNARE complex by Sec18p-mediated ...

متن کامل

A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion.

Yeast vacuoles undergo priming, docking, and homotypic fusion, although little has been known of the connections between these reactions. Vacuole-associated Vam2p and Vam6p (Vam2/6p) are components of a 65S complex containing SNARE proteins. Upon priming by Sec18p/NSF and ATP, Vam2/6p is released as a 38S subcomplex that binds Ypt7p to initiate docking. We now report that the 38S complex consis...

متن کامل

Yeast homotypic vacuole fusion requires the Ccz1–Mon1 complex during the tethering/docking stage

The function of the yeast lysosome/vacuole is critically linked with the morphology of the organelle. Accordingly, highly regulated processes control vacuolar fission and fusion events. Analysis of homotypic vacuole fusion demonstrated that vacuoles from strains defective in the CCZ1 and MON1 genes could not fuse. Morphological evidence suggested that these mutant vacuoles could not proceed to ...

متن کامل

Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion.

SNARE functions during membrane docking and fusion are regulated by Sec1/Munc18 (SM) chaperones and Rab/Ypt GTPase effectors. These functions for yeast vacuole fusion are combined in the six-subunit HOPS complex. HOPS facilitates Ypt7p nucleotide exchange, is a Ypt7p effector, and contains an SM protein. We have dissected the associations and requirements for HOPS, Ypt7p, and Sec17/18p during S...

متن کامل

Trans-SNARE complex assembly and yeast vacuole membrane fusion.

cis-SNARE complexes (anchored in one membrane) are disassembled by Sec17p (alpha-SNAP) and Sec18p (NSF), permitting the unpaired SNAREs to assemble in trans. We now report a direct assay of trans-SNARE complex formation during yeast vacuole docking. SNARE complex assembly and fusion is promoted by high concentrations of the SNARE Vam7p or Nyv1p or by addition of HOPS (homotypic fusion and vacuo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 148  شماره 

صفحات  -

تاریخ انتشار 2000